Solving Replication Problems in Complete Market by Orthogonal Series Expansion
نویسندگان
چکیده
We reconsider the replication problem for contingent claims in a complete market under a general framework. Since there are various limitations in the Black–Scholes pricing formula, we propose a new method to obtain an explicit self–financing trading strategy expression for replications of claims in a general model. The main advantage of our method is that we propose using an orthogonal expansion method to derive a closed–form expression for the self–financing strategy that is associated with some general underlying asset processes. As a consequence, a replication strategy is obtained for a European option. Converse to the traditional Black-Scholes theory, we derive a pricing formula for a European option from the proposed replication strategy that is quite different from the Black-Scholes pricing formula. We then provide an implementation procedure and then a numerical example to show how the proposed trading strategy works in practice and then compare with a replication strategy based on the Black-Scholes theory.
منابع مشابه
Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کاملKier Discussion Paper Series
Risk management is crucial for optimal portfolio management. One of the fastest growing areas in empirical finance is the expansion of financial derivatives. The purpose of this special issue on “Risk Management and Financial Derivatives” is to highlight some areas in which novel econometric, financial econometric and empirical finance methods have contributed significantly to the analysis of r...
متن کاملHartley Series Direct Method for Variational Problems
The computational method based on using the operational matrix of anorthogonal function for solving variational problems is computeroriented. In this approach, a truncated Hartley series together withthe operational matrix of integration and integration of the crossproduct of two cas vectors are used for finding the solution ofvariational problems. Two illustrative...
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملEigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions
In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....
متن کامل